• Posts Energía Rural
  • Cerificadores solares para extraer cera de abejas

    el 2015/04/14 en Conservación Agro-alimentos, I & D / Innovación, Procesado de Alimentos, Solar Térmica

    Equipos solares para extraer cera de abejas

    Según comunicación del profesor Dr.Becquer Camayo, et al. [1]  de la Universidad Nacional del Centro de Perú de la ciudad de Huancayo, Junín [1], se realizo una investigación con el propósito de contar con un equipo solar optimizado llamado cerificador solar para extraer la cera de abejas de los panales.

    Existen diferentes procedimientos para extraer y purificar la cera entre los cuales está los tradicionales y con equipos solares. Lesser [2]  plantea que: La cera puede fundirse en baño María o simplemente colocando los pedazos de panal en un recipiente con agua puestas sobre el fuego, cuando la cera está líquida comienza a flotar y se vierte sobre moldes previamente preparados.

     La forma más práctica, limpia y económica se realiza por medio del fundidor de cera solar, que es una caja con tapa de vidrio [1].

    Funde la cera mediante el calor que acumula  estando en el sol. En la parte media y su interior tiene una bandeja en plano inclinado, de donde cae la cera, una vez fundida, en un molde. La cera extraída por el método solar siempre es de color claro, blanqueándose más a medida que está expuesta al sol.

    Se experimentó con cuatro prototipos de cerificadores, los cuales se muestran en las figuras siguientes:

    B03F1_Cerificadores solares de cera

    Fig. 1. Cerificadores solares  de cera con un vidrio y con dos vidrios.

    B03F2_Cerificador solar de cera

    Fig. 2. Extractores  solares de cera con un vidrio y reflector y  con dos vidrios y reflector.

    Para determinar el equipo óptimo según su rendimiento se  desarrolló ensayos experimentales considerando las magnitudes cantidad de cera extraída y el tiempo transcurrido por los prototipos  de cerificadores solares. La cera extraída o producida se caracterizó de acuerdo a las normas técnicas de control de calidad de ceras de abejas del laboratorio tecnológico del Uruguay (LATU).

    RESULTADOS

    El presente trabajo se llevó a cabo en las instalaciones de la ciudad universitaria de la Facultad de Ciencias Aplicas de la Universidad Nacional del Centro del Perú ubicado en Pomachaca del distrito de Tarma, Provincia de Tarma, situado a 3000 m.s.n.m. La realización de la fase experimental de los extractores de cera de abejas y los análisis  de la cera de abejas se realizó los meses de mayo y junio del año del 2014. Los resultados de la extracción con los cuatro tipos de extractores solares de cera se muestran en la Tabla.

    B03F6_Tabla1 de cerificadores solares de cera

    A fin de establecer la apariencia general de la cera de abeja obtenida de los diferentes tipos de cerificadores establecidos en la presente investigación se ha evaluado algunos parámetros como la solubilidad, olor, aspecto y sabor. En los cuatro prototipos se obtuvo una capa sólida y homogénea, un olor característico de la miel, un aspecto de sólido amorfo y un sabor característico.

       En trabajo [1] se concluye que:

    1. El equipo solar óptimo para la extracción cera de abejas es el cerificador que cuenta con una tapa de doble vidrio y espejo como reflector seguido por el cerificador con tapa de un vidrio y espejo como reflector.
    2. La cera de abejas extraída con los equipos solares tiene la calidad de acuerdo a las Normas de control de calidad de ceras de abejas del laboratorio tecnológico del Uruguay (LATU).
    3.  El equipo solar es una propuesta ambientalmente sostenible de aplicación de energías limpias para los apicultores por su bajo costo y facilidad de manejo constituyéndose una tecnología apropiada.

    Referencias

    1. Ruíz Romero, Norma;  Vilcahuaman Portada, Berenice; Dr. Becquer Frauberth Camayo Lapa, Becquer y Massipe Hernández, Juan Raúl. “Optimización de un equipo solar para extraer y caracterizar cera de abejas”.  XXI Simposio Peruano de Energía Solar, 10-14 de Noviembre. Piura, Perú.

     2. Lesser, R. (1998). Manual de la apicultura moderna. (2da. Ed). Chile: Universitaria.

    VN:R_U [1.9.17_1161]
    Rating: 0.0/5 (0 votes cast)
    Avatar de naRural

    por naRural

    Premios Odebrecht 2014 de Perú

    el 2015/04/09 en Energía Solar Fotovoltaica, Otras Energías, Solar Térmica

    P01_F01a_Premio OderbrechtLa 5ta edición del “Premio Odebrecht para el Desarrollo Sostenible”, iniciativa de la Organización Odebrecht llevó a cabo su ceremonia de premiación a los equipos ganadores de su 5ta edición, los cuales se impusieron a más de 100 proyectos de 38 universidades  por considerar en la génesis de sus propuestas las variables económica, ecológica y social.

    http://www.premioodebrecht.com.pe/system/posts/images/76/original/150401.jpg

    Sirvan estos premios para fomentar la investigación y la innovación de nuestros estudiantes en las energías renovables y las tecnologías sostenibles.

    Los dos equipos ganadores de la edición 2014 presentaron los siguientes proyectos:

    1. Iluminación solar y purificación de agua – Universidad Nacional Mayor de San Marcos (Lima).
    2. Inti Muya – Universidad Católica Santo Toribio de Mogrovejo (Chiclayo).

    En el siguiente vídeo se muestra un resumen de los proyectos finalistas:

    VN:R_U [1.9.17_1161]
    Rating: 0.0/5 (0 votes cast)

    Sistemas solares en los Andes peruanos II

    el 2015/03/30 en Bioclimatismo, Blog, Calefacción y Refrigeración, Consejos en línea, Ingeniería / Consultoría, Otros Eficiencia Energética, Solar Térmica

    Cámaras Calientes 

    Según comunicación del profesor Dr.Ciro Espinoza de la Universidad Nacional del Centro de Perú  [1], “el Grupo de Energía Solar de la UNCP realizo una investigación con el objetico de determinar cuál es la configuración del sistema de calefacción que influye eficientemente en reducir el friaje en viviendas del alto-andinas [1].

    El frío impacta con mayor fuerza en los pobladores del alto-andinos, y con mayor razón en poblaciones pobres. Sin embargo, durante los meses de intenso frío el cielo es despejado con una relativa alta radiación solar que podría almacenaje para utilizarse durante las noches que es el momento donde las temperaturas bajan en extremo”.

    Beneficiados

    La cantidad de viviendas beneficiadas en este proyecto con la instalación de Muro Trombe o Cámaras Calientes para la calefacción son 31 vivendas ubicadas en los ditritos de San José de Quero y Yanacancha de las provincias de Concepción y Chupaca de la regón de Junín en el Perú.

    El muro Trombe 

    ¿Qué es un muro Trombe?

    Es un captador-acumulador-emisor de la energía solar cuya función es calentar espacios, cámaras, habitaciones durante la noche. En la Figura 1 se muestra en esquemas detalles de un muro Trombe y de la cámara caliente

    Muro Trombe y cámara caliente solar

    Fig. 1. Muro Trombe con pared y lecho de piedras.

    El muro Trombe está compuesto por una superficie transparente, de vidrio o de plástico, una cámara de aire y un acumulador másico de calor por calor sensible que puede ser una pared (muro) o un lecho de piedras, que permite durante el día solar  acumular la energía solar en forma de calor sensible para disipar este calor durante la noche.

    Detalles constructivos de la cámara caliente

    En las Figuras 2 y 3 se muestran detalles constructivos de las cámaras calientes del muro Trombe.

    Lecho de piedras de muro TrombeFig. 2. Lecho de piedras de las cámaras calientes.

    Cubierta transparente de muro Trombe

    Fig. 3. Cubierta transparente del muro Trombe.

    Condiciones ambientales y actinométricas

    En [1] se selecciono 6 viviendas de las 31 para realizar un estudio de su comportamiento térmico. Estas viviendas se encuentran ubicadas entre los 3652 msnm y 3900 msnm. Las horas de sol que recibe la cámara caliente varía en función de su orientación geográfica, este número oscilo entre 6 y 8 horas al día.

    Alturas solares en hemisferio surAl encontrarse las viviendas ubicadas en el hemisferio Sur de nuestro planeta, la menor altura solar de 54°se alcanza el 21 de junio y la mayor altura soalr de 101° el 21 de diciembre como se muestra en la Fig.4.

    Fig. 4. Alturas solares en Hemisferio Sur [1].

    Registro de temperaturas

    Según [1], el registro de las mediciones de las temperaturas de la cámara, habitación se realizó entre las 11:00 h y las 13:00 h medios a intervalos de 15 minutos. Durante la medición los conductos de aire estaban abiertas.

    Temperaturas en viviendas con muro TrombeEl promedio de las temperaturas se muestra en la Tabla 1. Estos resultados muestran que los muros Trombe con cámaras calientes mejoran las condiciones de vida de sus pobladores y por consiguiente su salud.

    Ejemplos de viviendas muro Trombe y cámaras caliente

    Muro Trombe_cámara caliente solar_Andés peruanos

    Referencias

    1. Espinoza Montes, C.A. “Sistema de calefacción solar para reducir el friaje en viviendas alto andinas”. Facultad de Ingeniería Mecánica de la Universidad Nacional del Centro de Perú, 2014.
    VN:R_U [1.9.17_1161]
    Rating: 0.0/5 (0 votes cast)

    La Entropía de Boltzmann

    el 2015/03/26 en Formación / eLearning, I & D / Innovación, Otras Energías, Otros Eficiencia Energética, Solar Térmica

    El  concepto de entropía  fue establecido por  Rudolf  Clausius en la segunda mitad  del  Siglo  XIX, en el limitado contexto de la  termodinámica  clásica. Sin dudas  es la aproximación más conocida y divulgada  del polémico concepto, debido a que ha encontrado un sinnúmero de aplicaciones en el campo de la termodinámica técnica, de la química y en otros campos específicos de la ciencia. Sin embargo, intrínseca en esta formulación esta la dificultad señalada por  W.  Pauli que  reza  asi:

     “Extraño nos parece que en la termodinámica siempre es necesario hacer una  rigurosa diferenciación entre calor y trabajo,  a pesar de que el primer principio habla de su equivalencia. La  mecánica estadística (la basada  entre  otras  cosas  en el concepto  estadistico de  entropía),  no requiere de estos procedimientos  mágicos. Ella explica las peculiares propiedades  termodinámicas por medio del comportamiento microscópico de los sistemas dotados de un gran número de  grados de libertad inimaginablemente grandes”.

     Al mismo problema de la termodinámica clásica se refirio Leon  Brillouin en su Libro  Ciencia, Información e Incertidumbre. En su capítulo I el autor  escribió:

    “En la termodinámica  clásica  el concepto de valor parece estar  esencialmente ligado a los conceptos de calor y temperatura. Los físicos no han sido capaces, y quizás no lo sean, de desligar estas entidades”.

     En el caso específico de esta blog, cuyo objetivo fundamental es la interpretación y aplicación de la II  Ley en universos muy alejados del lugar de origen de la termodinámica, tanto los señalamientos de Pauli, como los de Brillouin tienen gran relevancia.

    Entropia y II ley de la Termodinámica

     Sin embargo, constituye  un hecho indiscutible, que desde su surgimiento la mecánica estadística, y especialmente  su concepto estadístico de entropía, ha sido patrimonio casi exclusivo de físicos y teóricos en general, que han encontrado en ella solución  a problemas fundamentales y también enjundiosas  aplicaciones. A  esto se  añade  que, desafortunadamente, ha sido tradicional la presentación separada de la termodinámica fenomenológica, es decir, la llamada termodinámica clásica y la  mucho más  potente  como teoría  física,  termodinámica  estadística.

     Aunque resulte increíble, esta  conducta estuvo signada por el hecho de que, surgida en el punto más critico de la controversia de los físicos Mach y Ostwald, de gran influencia entonces en Europa, con Boltzmann, sobre la existencia misma de los átomos, el nuevo enfoque de la termodinámica siempre pendió la duda sobre sus propios fundamentos.

     De este modo, la más ortodoxa formulación clásica de la termodinámica siempre ha resultado privilegiada en relación con la estadística lo que  sin dudas  resulto en perjuicio  de  la  formación  de generaciones  y generaciones  de profesionales  de diversos tipos. Como es conocido en el caso de la  termodinámica estadística, se trata de un enfoque microscópico que depende absolutamente de la elaboración de un modelo físico. Obviamente, dado que ya no existe  duda sobre la existencia misma de los átomos, información que hubiera significado  para  Boltzmann la vida, no se justifica la posición original de preterir la mecánica estadística.

      Dado que el concepto de entropía de  Boltzmann forma parte esencial de este universo, si se quiere alcanzar una comprensión masiva del concepto, es necesario poner especial énfasis en la claridad de la presentación. Una forma de lograr esto, sin dudas lo constituye el proceder de inicio a una formulación del concepto de entropía con un enfoque estadístico, obviando cualquier referencia  a la formulación clásica. Esta última  resulta particularmente inadecuada cuando de enfrentar el reto de  Brillouin de extender  la  termodinámica  más allá  de  su lugar  de origen se trata.

     Por otra parte, a partir de la aparición en pleno  Siglo  XX de la  teoría de la información, especie de extensión de la termodinámica como rama  de la física teórica, el concepto de entropía adquirió una nueva connotación y también un nuevo significado. De hecho adquirió una nueva dimensión, toda vez  que un concepto propio  de la teoría  de la información, la  llamada  entropía  de  Shannon, al margen  de  su  total  semejanza de su  expresión matemática con  la definición de entropía  de Boltzmann, es  una  medida del grado de desinformación  que se tiene sobre  un sistema  y no se relaciona, por tanto, como la entropía  en termodinámica, con el estado del sistema como tal. Esta  sutil diferencia es  muy  importante.

      A  continuación se desarrollan  distintas  aplicaciones del concepto de  entropía  estadística de  Boltzmann con el propósito de mostrar  su  universalidad  y, de este modo, su inestimable  valor. Se  trata de temas diversos, algunos  de ellos sin antecedente  conocido en la literatura  especializada, como la pandemia  del VIH, por  ejemplo. Este  es  solo el comienzo de un esfuerzo   abarcador que incluirá  en un futuro inmediato que abarcara en el caso del VIH, tanto el mecanismo de acción  de  la  adquisición de la  enfermedad como fenómeno de  invasión viral de las  células sanas,  como  su  comportamiento epidemiológico. Este  es  un tema, como se  conoce, altamente  sensible  para  la  humanidad.

    VN:R_U [1.9.17_1161]
    Rating: 0.0/5 (0 votes cast)

    La lógica ilógica del micromundo

    el 2015/03/19 en Energía Solar Fotovoltaica, Formación / eLearning, I & D / Innovación, Otras Energías, Solar Térmica

    La lógica del micromundo incluido el átomo, el núcleo y las partículas elementales que lo constituye, como el neutrón, el protón, los mesones, difiere sustancialmente de la lógica del macromundo; el mundo en que vivimos que ha condicionado todas nuestras perfecciones del mundo circundante. A partir de las representaciones que el ser humano ha desarrollado sobre la base de sus experiencias cotidianas, es muy difícil aceptar la lógica del micromundo, es decir, la lógica de la mecánica cuántica.

    La primera cosa que es importante no dejar de repetir es que la capacidad de predicción, como teoría científica, de la mecánica cuántica se basa en consideraciones de naturaleza probabilística.

    En realidad, para  comprender el enfoque  microscópico de  Boltzmann, no es necesario estudiar  en detalle la peculiar  composición atómica.

    Desafortunadamente, los prejuicios contra el concepto de entropía  estadística han durado demasiado, casí  un  siglo. Hoy  día el concepto tiene, docentemente,  un alcance  limitado, siendo patrimonio casi exclusivo del mundo  de los  físicos  teóricos.

    Existen dos formas de percibir  la realidad, la racional y lógica propia  de la ciencia, y la intuitiva, esencialmente  subjetiva, propia  del  arte. En realidad  no es una frontera definida  lo que las divide;  hay mucho de intuición en la  ciencia  y también hay racionalidad  en el reflejo de la realidad  del  artista.

    La  obra de  Boltzmann se  ubica en el tipo de reflejo  racional de la realidad, la de  Hawking  en esa  especie de tierra  de  nadie entre lo racional y lo estético, mitad ciencia y mitad  poesía. Ambos  resultaron ser del tipo de ser  humano que, al decir del poeta guatemalteco  Roque  Dalton,  son  los  culpables  de nuestros sueños. La  muestra  plástica  que aquí se ofrece, con su obstinada insistencia  en el agobiante  tema de la  irreversibilidad  de los procesos reales, constituye  un imprescindible homenaje  a estos dos  físicos.

    Una  aclaración  necesaria

    Este trabajo constituye solo   un paso  más de los esfuerzos realizados  por los autores  para colocar el  llamado  principio  de entropía  de  Boltzmann y el enfoque  mismo del gran científico austriaco sobre  el fenómeno de la irreversibilidad, que es lo mismo que decir sobre los procesos de  degradación de los  sistemas para la vida, en el centro de  la  lucha por la  supervivencia humana.

     De lo que se trata es de intentar  resolver toda  una larga cadena de problemas actuales que en su devenir podrían conducir a un dramático escenario. Se  trata de una forma de enfocar la lucha por evitar catástrofes de todo tipo,  de mitigar  sus  consecuencias  en el caso de que ocurran, y también de enfocar  racionalmente el problema del uso  de la energía en un mundo que cada vez comprende mejor que  los recursos de que dispone son finitos y que ineluctablemente se agotaran en un futuro demasiado cercano.

    Cuba, país  donde se pueden encontrar los  antecedentes  de estas ideas, recogidas en la monografista titulada  Termodinámica de los concentradores solares, Editorial Española, resultado  bibliográfico  de un curso de postgrado de carácter  nacional que  acumula casi veinte  años de experiencias docentes y de investigación sobre  fuentes  renovables de energía; debe ser por lógica  y derecho propio .

    Una  experiencia  sacada  de  este esfuerzo  docente  es  que el proceso  de  concentración de  la luz  solar  constituye  una  forma  clara y rigurosa, muy original, de ´presentar el concepto de  entropía  de  Boltzmann”. Este enfoque debería formar parte de la docencia habitual universitaria y tecnológica.

    Más  aun, dada la sencillez  de su formulación matemática del concepto de entropía  de  Boltzmann,  que requiere solo el dominio del concepto de logaritmo y de algunas de sus propiedades  elementales, la empresa resulta en principio perfectamente  factible. La  célebre formula física:

                     S =    k · ln W

    la cual, sin tanto impacto como la relativista de  Einstein:  E = mc2, removió los cimientos de la física teórica  a principios  del  siglo XX.

    Por otra parte, ya hoy día está claro para todo el mundo que los  recursos  de que  el  hombre  dispone para  vivir  están sometidos hoy día  a  un constante proceso  de extinción y degradación que, por lo general, lamentablemente  se  manifiesta  a  un ritmo  vertiginoso. Se trata  de un proceso constante de aumento de entropía en  el mundo, integralmente considerado, como un sistema, que la supervivencia humana, en peligro,  impone  controlar con premura. Por esta  razón, la  llamada  definición estadística  de entropía, la de  Boltzmann, sin dudas, la forma  más clara de presentar  este  concepto, necesariamente  debe ser  del  conocimiento de todos.

    VN:R_U [1.9.17_1161]
    Rating: 0.0/5 (0 votes cast)

    Sistemas solares en los Andes del Perú

    el 2015/03/10 en Bioclimatismo, Energía Solar Fotovoltaica, Solar Térmica

    En una mañana de Septiembre de 2014, me paso a recoger a las 4.00 am, en el Hotel donde me hospedaba en la ciudad de Huancayo, Junín, Perú el profesor CarlosAñadir objeto  miembro del equipo de investigación que dirige el  Dr. Ciro Espinoza de la Universidad Nacional del Centro del Perú, con el objetivo de visitar 9 viviendas a 4000 msnm en los distritos de Yanacancha y San José de Quero de las provincias de Chupaca y Concepción de la Región de Junín del Perú,  en las cuales se instalaron colectores solares termosifónicos de tubos al vacio para el suministro de agua caliente sanitaria, un sistema fotovoltaico aislado para el alumbrado,  un muro tromble para reducir el friaje, cocinas ecológicas con evacuación de gases y un invernadero para el cultivo de hortalizas.

    La experiencia fue única e inolvidable, ver como el uso de tecnologías solares y sostenibles contribuye al incremento de la calidad de vida, salud y bienestar  a familias  en los altos de los Andes y el agradecimiento de sus pobladores es una demostración de las potencialidades y del alcance estas tecnologías.

    20140901_Perú_01a

     

    Fig. 1. Colector solar termosifónico y módulo fotovoltaico.

    20140901_Perú_03a

    Fig. 2. Vista de los sistemas solares instalados en una vivienda.

    20140901_Perú_4

    Fig. 3. Invernadero para el cultivo de hortalizas.

    20140901_Perú_5a

    Fig. 4. Con el profesor Carlos y estudiantes colaboradores de la UNCP.

    VN:R_U [1.9.17_1161]
    Rating: 0.0/5 (0 votes cast)
  • Abrir la barra de herramientas