solar fotovoltaica Archives - Energía naRural

naRural posts Community posts

La radiación solar y la estación SOLMET

el 2015/07/21 en Bioclimatismo, Calefacción y Refrigeración, Energía Solar Fotovoltaica, I & D / Innovación, Solar Térmica

La utilización en gran escala de la energía solar en los diferentes países está ligada a la solución de toda una serie de tareas tecnológicas y a la disponibilidad de la energía solar. Las instalaciones solares tanto térmicas como fotovoltaica requieren una modelación matemática detallada y para ello es necesario disponer de información sobre la energía solar en la superficie de la Tierra.

El disponer de registros de radiación solar fiables y contrastados permite la estimación de la radiación solar incidente sobre una superficie inclinada, con una determinada orientación, es esencial a la hora de determinar el dimensionado y el rendimiento de una instalación destinada al aprovechamiento de la energía solar.

Medir la radiación solar es importante para un amplio rango de aplicaciones, en la agricultura,  la ingeniería, la arquitectura, generación solar de electricidad, instalaciones y equipos solares, modelos de predicción del clima, investigación y desarrollo de tecnologías solares, etc.

El estudio del comportamiento y los ensayos de los dispositivos solares térmicos y fotovoltaicos  conllevan la necesidad de su caracterización en laboratorios, el tratamiento de la data experimental y el registro de las magnitudes actinométricas y meteorológicas en estaciones tipo SOLMET (Fig. 1).

B07F01_Estaciones meteorológicas

Fig. 1. Estaciones actinométricas y meteorológicas.

Se impone así la necesidad de realizar mediciones y registros de las magnitudes que caracterizan el régimen de radiación solar en estaciones con condiciones controladas. Una estación actinométrica permite disponer de datos de horas de Sol (Heliografos, Fig.2), radiación solar global,  difusa y directa (Piranómetros y Pirheliómetro, Fig. 3)  temperatura y humedad relativa del aire, presión atmosférica y velocidad y la dirección del viento.

B07F02_Heliografos anallógicos y digitales

Fig. 2. Heliógrafos analógicos y digital.

      B07F03_Piranometros_pirheliómetros

Fig. 3. Piranómetros y Pirheliómetros.

La Estación deberá estar integrada por instrumentos de alta tecnología, con certificados de calibración ISO, gran fiabilidad y alta precisión que de forma automatizada  registre y procese las magnitudes medidas.

Estación SOLMET, es una estación con un grado de fiabilidad suficiente para servir de referencia en un área geográfica dada con vistas al aprovechamiento e investigación de la energía solar.

Para alcanzar este objetivo, además de los equipos e instrumentos de la estación es necesario la formación de técnicos con alto nivel de profesionalidad que dominen los campos siguientes:

  • Cinemática solar;
  • Conceptos actinométricos;
  • Mantenimiento y calibración de los instrumentos y sensores;
  • Software de uso común en la actinometría especializada;
  • Dominio de las técnicas de control automático para garantizar la operación y autonomía de los equipos y registradores a lo largo del tiempo.

Referencias

  1. Alvarez-Guerra, M. et al. “Manual de radiación solar para la República de Cuba”. Editorial ACC. La Habana, Cuba, 1992. ISBN: 959-02-0014-1.
  1. Alvarez-Guerra, M. ; Massipe Hernández, J.R., et al. “La Estación  Actinométrica  del  CIES   elevada  a Estación SOLMET“. Energía, 2,1992. ISSN:1028-9925.
VN:R_U [1.9.17_1161]
Rating: 0.0/5 (0 votes cast)

La Termodinámica solar y la encíclica del papa Francisco

el 2015/07/17 en Biomasa, Energía Eólica, Energía Hidroeléctrica, Energía Solar Fotovoltaica, Geotérmica, I & D / Innovación, Solar Térmica

BM09_F1_Encíclica papalLa encíclica del Papa Francisco Alabado… (Fig. 1) le concede especial importancia a la afectación que le ocasiona a nuestro planeta y a sus recursos de vida la acción del hombre. Esto es particularmente así cuando la afectación es debida al uso de armas de destrucción masiva.

Fig. 1. Portada de la encíclica del papa Francisco.

En este sentido se debe enfatizar el hecho de que, además del uso de las bombas como tales, son particularmente dañinos los procesos de producción del llamado material fisionable que en ellas se utilizan.

Han resultado particularmente degradantes  para nuestra Tierra los procesos de producción de armas nucleares. Los proyectos nucleares de EEUU (proyecto Manhattan) y la Unión Soviética en la década de los cuarenta son un buen ejemplo de esto. Curiosamente, el estudio desde el punto de vista conceptual del uso de la luz solar como fuente de energía, proporciona el aparato conceptual adecuado para el análisis de este problema. En efecto, hasta el presente no se enseña con suficiente claridad en los cursos de termodinámica de las carreras universitarias y aun en los cursos de nivel medio superior, que el colosal desequilibrio potencial que se logra al fabricar una bomba atómica, por ejemplo, se logra al precio de una enorme compensación termodinámica.

Zonas enteras del mundo han resultado afectadas en el afán de obtener productos nucleares. A su vez, cuando la bomba es detonada se desencadena  un proceso de cinética nunca antes vista. El grado de irreversibilidad del proceso se manifiesta en los conocidos tres efectos destructivos de la bomba: un huracán de velocidad del orden de cientos de km por hora, un huracán de fuego y otro radioactivo, (Fig.2).

BM09_F2_TD_encíclica papal

Fig. 2. Representación de un huracán y la explosión de una bomba átomica.

Explicado de esta forma, el tema es perfectamente comprensible para un alumno del nivel medio superior. Sin embargo, nunca se enseña termodinámica de este modo. Esta es, en última instancia solo un ejemplo de la forma de educar a las futuras generaciones que la Encíclica del Papa  Francisco pide de nosotros.

Lo anteriormente señalado a modo de ejemplo es solo una expresión del criterio defendido en nuestra interpretación de la Encíclica de que el mundo exige para su supervivencia un cambio radical de las concepciones docentes vigentes y más aun de los temas que forman parte de los planes de estudio. En esta nueva concepción de la docencia ha jugado un papel fundamental el estudio de  la termodinámica de los concentradores solares, especialmente el vínculo esencial que se pone  de manifiesto en este estudio entre óptica y termodinámica de la luz solar (Fig.3).

BM09_F3_Termodinámica concentradores solares

Fig. 3. Portada del libro Termodinámica de los concentradores solares.

El milagro de la creación interpretado a través de nuestro Sol.            

VN:R_U [1.9.17_1161]
Rating: 0.0/5 (0 votes cast)

Fotoconversión y Termoconversión de la luz solar

el 2015/04/19 en Energía Solar Fotovoltaica, Formación / eLearning, I & D / Innovación, Solar Térmica

La fotosfera y la constante de Stephan-Boltzmann

La radiación solar que llega a la Tierra procedente del Sol, en forma de luz visible procede de la fotosfera solar. Aproximadamente, se trata de un emisor de radiación de cuerpo negro a una temperatura cercana a los 6000 K. En la descripción de este proceso de transferencia de calor, la ley de Stefan—Boltzmann, la cual describe la emisión de radiación, juega un papel esencial

 La obtención de la fórmula de la constante de Stephan –Boltzmann solo es posible mediante la aplicación de métodos propios de la física estadística. La termodinámica clásica no permite obtener este resultado, en rigor, solo permite concluir que el cuerpo negro emite energía por unidad de tiempo proporcionalmente a la cuarta potencia de la temperatura absoluta T(K).

 La termodinámica estadística va más allá de esto, proporcionado la fórmula deseada. El efecto útil de este resultado, no consiste solo en  la obtención de la fórmula como tal, sino también en el hecho de que, a lo largo de la demostración, se puede apreciar con claridad el vínculo esencial existente entre las dos opciones de utilización de la luz solar como fuente de energía: la térmica y la fotovoltaica.  La solución de la integral (1) da como resultado:

BM04r_F3_Fórmula1

Nótese que se trata, hasta aquí de radiación en estado de equilibrio, por ejemplo radiación encerrada en una cavidad (ver Fig. 1).

Sin embargo, ley de Stephan—Boltzmann se refiere a un proceso de emisión de radiación. Se trata de  un caso típico de un sistema en estado de desequilibrio en el que tiene lugar un proceso de transferencia de energía por radiación y establece que “un cuerpo negro emite radiación con una potencia emisiva hemisférica total, [W/m²] proporcional a la cuarta potencia de su temperatura”

BM04r_F1Cavidad con radiación cuerpo negro equilibrio

Fig. 1. Cuerpo negro en equilibrio.

Sea la misma cavidad con radiación en equilibrio en su interior, en la que se ha practicado un orificio de forma que se ha convertido en un sistema emisor de radiación. Se conoce también que, de acuerdo con la teoría cuántica, los fotones viajan a la velocidad de la luz c y que estos abandonan la cavidad en proporción directa al diferencial de ángulo solido asociado a la dirección de su trayectoria,   obviamente, como una mitad de estos fotones va en una dirección y la otra en la contraria, resulta la expresión deseada:

BM04r_F4_Fórmula2

donde: es la constante de Stephan–Boltzmann y es  igual a 5,6704·10-8 Wm-2K-4.

Esta expresión puede ser escrita de una forma diferente. Para ello es necesario introducir el concepto óptico de índice de refracción, el cual se define de acuerdo con la formula:

BM04r_F5_Fórmula3

 En realidad se trata de la inclusión en el modelo del hecho físico de que la presencia de un medio dieléctrico de índice de refracción diferente de uno, modifica la expresión de la constante de Stefan–Boltzmann para el vacio, aumentando su valor. En el caso  de la fotosfera solar como emisor de radiación de cuerpo negro, se tiene n = 1.

Interpretación física de la demostración: foto y termo conversión de la luz solar

 A los efectos de establecer una relación conceptual entre las dos formas básicas de utilización de la luz solar como fuente de energía, la térmica y la fotovoltaica, se pone de manifiesto el carácter integral de la emisión de energía térmica que describe la ley de Stefan—Boltzmann. Se trata de reparar en el hecho de que a la emisión de energía contribuyen todos los modos de vibración presentes en el espectro de emisión.

 Conceptualmente, la diferencia entre una forma u otra forma de conversión de la luz solar reside en el hecho de que la celda solar convierte la luz solar en energía eléctrica intervalo por intervalo de frecuencia, mientras el cuerpo que absorbe la luz, se calienta mediante un mecanismo fonónico y entonces emite radiación de acuerdo con la ley de Stephan-Boltzmann.

 Desde el punto de vista espectral, esto último lo hace ya integralmente, desentendiéndose de la distribución de frecuencias. Sin embargo, y esto es lo más importante, a ella contribuyen, como contribuyen también en el caso de la conversión fotovoltaica, los modos de vibración descritos anteriormente.

Blog4r_F2_Colector y móduloFV

Fig.2. Colector solar plano y módulo fotovoltaivo.

 Dado que se trata de una forma menos detallada de conversión, la cual lleva implícito cierto nivel de desinformación y, por tanto, un proceso de conversión de una forma de energía en otra que tiene lugar con mayor grado de irreversibilidad, resulta esperable que el resultado final sea menos valioso, calor a baja temperatura, en contraposición a la energía eléctrica producida por la conversión fotovoltaica; una energía de máxima gradación, energía eléctrica, la que resulta del proceso de fotoconversion de la luz solar.

 

VN:R_U [1.9.17_1161]
Rating: 0.0/5 (0 votes cast)

La Entropía de Boltzmann

el 2015/03/26 en Formación / eLearning, I & D / Innovación, Otras Energías, Otros Eficiencia Energética, Solar Térmica

El  concepto de entropía  fue establecido por  Rudolf  Clausius en la segunda mitad  del  Siglo  XIX, en el limitado contexto de la  termodinámica  clásica. Sin dudas  es la aproximación más conocida y divulgada  del polémico concepto, debido a que ha encontrado un sinnúmero de aplicaciones en el campo de la termodinámica técnica, de la química y en otros campos específicos de la ciencia. Sin embargo, intrínseca en esta formulación esta la dificultad señalada por  W.  Pauli que  reza  asi:

 “Extraño nos parece que en la termodinámica siempre es necesario hacer una  rigurosa diferenciación entre calor y trabajo,  a pesar de que el primer principio habla de su equivalencia. La  mecánica estadística (la basada  entre  otras  cosas  en el concepto  estadistico de  entropía),  no requiere de estos procedimientos  mágicos. Ella explica las peculiares propiedades  termodinámicas por medio del comportamiento microscópico de los sistemas dotados de un gran número de  grados de libertad inimaginablemente grandes”.

 Al mismo problema de la termodinámica clásica se refirio Leon  Brillouin en su Libro  Ciencia, Información e Incertidumbre. En su capítulo I el autor  escribió:

“En la termodinámica  clásica  el concepto de valor parece estar  esencialmente ligado a los conceptos de calor y temperatura. Los físicos no han sido capaces, y quizás no lo sean, de desligar estas entidades”.

 En el caso específico de esta blog, cuyo objetivo fundamental es la interpretación y aplicación de la II  Ley en universos muy alejados del lugar de origen de la termodinámica, tanto los señalamientos de Pauli, como los de Brillouin tienen gran relevancia.

Entropia y II ley de la Termodinámica

 Sin embargo, constituye  un hecho indiscutible, que desde su surgimiento la mecánica estadística, y especialmente  su concepto estadístico de entropía, ha sido patrimonio casi exclusivo de físicos y teóricos en general, que han encontrado en ella solución  a problemas fundamentales y también enjundiosas  aplicaciones. A  esto se  añade  que, desafortunadamente, ha sido tradicional la presentación separada de la termodinámica fenomenológica, es decir, la llamada termodinámica clásica y la  mucho más  potente  como teoría  física,  termodinámica  estadística.

 Aunque resulte increíble, esta  conducta estuvo signada por el hecho de que, surgida en el punto más critico de la controversia de los físicos Mach y Ostwald, de gran influencia entonces en Europa, con Boltzmann, sobre la existencia misma de los átomos, el nuevo enfoque de la termodinámica siempre pendió la duda sobre sus propios fundamentos.

 De este modo, la más ortodoxa formulación clásica de la termodinámica siempre ha resultado privilegiada en relación con la estadística lo que  sin dudas  resulto en perjuicio  de  la  formación  de generaciones  y generaciones  de profesionales  de diversos tipos. Como es conocido en el caso de la  termodinámica estadística, se trata de un enfoque microscópico que depende absolutamente de la elaboración de un modelo físico. Obviamente, dado que ya no existe  duda sobre la existencia misma de los átomos, información que hubiera significado  para  Boltzmann la vida, no se justifica la posición original de preterir la mecánica estadística.

  Dado que el concepto de entropía de  Boltzmann forma parte esencial de este universo, si se quiere alcanzar una comprensión masiva del concepto, es necesario poner especial énfasis en la claridad de la presentación. Una forma de lograr esto, sin dudas lo constituye el proceder de inicio a una formulación del concepto de entropía con un enfoque estadístico, obviando cualquier referencia  a la formulación clásica. Esta última  resulta particularmente inadecuada cuando de enfrentar el reto de  Brillouin de extender  la  termodinámica  más allá  de  su lugar  de origen se trata.

 Por otra parte, a partir de la aparición en pleno  Siglo  XX de la  teoría de la información, especie de extensión de la termodinámica como rama  de la física teórica, el concepto de entropía adquirió una nueva connotación y también un nuevo significado. De hecho adquirió una nueva dimensión, toda vez  que un concepto propio  de la teoría  de la información, la  llamada  entropía  de  Shannon, al margen  de  su  total  semejanza de su  expresión matemática con  la definición de entropía  de Boltzmann, es  una  medida del grado de desinformación  que se tiene sobre  un sistema  y no se relaciona, por tanto, como la entropía  en termodinámica, con el estado del sistema como tal. Esta  sutil diferencia es  muy  importante.

  A  continuación se desarrollan  distintas  aplicaciones del concepto de  entropía  estadística de  Boltzmann con el propósito de mostrar  su  universalidad  y, de este modo, su inestimable  valor. Se  trata de temas diversos, algunos  de ellos sin antecedente  conocido en la literatura  especializada, como la pandemia  del VIH, por  ejemplo. Este  es  solo el comienzo de un esfuerzo   abarcador que incluirá  en un futuro inmediato que abarcara en el caso del VIH, tanto el mecanismo de acción  de  la  adquisición de la  enfermedad como fenómeno de  invasión viral de las  células sanas,  como  su  comportamiento epidemiológico. Este  es  un tema, como se  conoce, altamente  sensible  para  la  humanidad.

VN:R_U [1.9.17_1161]
Rating: 0.0/5 (0 votes cast)

La lógica ilógica del micromundo

el 2015/03/19 en Energía Solar Fotovoltaica, Formación / eLearning, I & D / Innovación, Otras Energías, Solar Térmica

La lógica del micromundo incluido el átomo, el núcleo y las partículas elementales que lo constituye, como el neutrón, el protón, los mesones, difiere sustancialmente de la lógica del macromundo; el mundo en que vivimos que ha condicionado todas nuestras perfecciones del mundo circundante. A partir de las representaciones que el ser humano ha desarrollado sobre la base de sus experiencias cotidianas, es muy difícil aceptar la lógica del micromundo, es decir, la lógica de la mecánica cuántica.

La primera cosa que es importante no dejar de repetir es que la capacidad de predicción, como teoría científica, de la mecánica cuántica se basa en consideraciones de naturaleza probabilística.

En realidad, para  comprender el enfoque  microscópico de  Boltzmann, no es necesario estudiar  en detalle la peculiar  composición atómica.

Desafortunadamente, los prejuicios contra el concepto de entropía  estadística han durado demasiado, casí  un  siglo. Hoy  día el concepto tiene, docentemente,  un alcance  limitado, siendo patrimonio casi exclusivo del mundo  de los  físicos  teóricos.

Existen dos formas de percibir  la realidad, la racional y lógica propia  de la ciencia, y la intuitiva, esencialmente  subjetiva, propia  del  arte. En realidad  no es una frontera definida  lo que las divide;  hay mucho de intuición en la  ciencia  y también hay racionalidad  en el reflejo de la realidad  del  artista.

La  obra de  Boltzmann se  ubica en el tipo de reflejo  racional de la realidad, la de  Hawking  en esa  especie de tierra  de  nadie entre lo racional y lo estético, mitad ciencia y mitad  poesía. Ambos  resultaron ser del tipo de ser  humano que, al decir del poeta guatemalteco  Roque  Dalton,  son  los  culpables  de nuestros sueños. La  muestra  plástica  que aquí se ofrece, con su obstinada insistencia  en el agobiante  tema de la  irreversibilidad  de los procesos reales, constituye  un imprescindible homenaje  a estos dos  físicos.

Una  aclaración  necesaria

Este trabajo constituye solo   un paso  más de los esfuerzos realizados  por los autores  para colocar el  llamado  principio  de entropía  de  Boltzmann y el enfoque  mismo del gran científico austriaco sobre  el fenómeno de la irreversibilidad, que es lo mismo que decir sobre los procesos de  degradación de los  sistemas para la vida, en el centro de  la  lucha por la  supervivencia humana.

 De lo que se trata es de intentar  resolver toda  una larga cadena de problemas actuales que en su devenir podrían conducir a un dramático escenario. Se  trata de una forma de enfocar la lucha por evitar catástrofes de todo tipo,  de mitigar  sus  consecuencias  en el caso de que ocurran, y también de enfocar  racionalmente el problema del uso  de la energía en un mundo que cada vez comprende mejor que  los recursos de que dispone son finitos y que ineluctablemente se agotaran en un futuro demasiado cercano.

Cuba, país  donde se pueden encontrar los  antecedentes  de estas ideas, recogidas en la monografista titulada  Termodinámica de los concentradores solares, Editorial Española, resultado  bibliográfico  de un curso de postgrado de carácter  nacional que  acumula casi veinte  años de experiencias docentes y de investigación sobre  fuentes  renovables de energía; debe ser por lógica  y derecho propio .

Una  experiencia  sacada  de  este esfuerzo  docente  es  que el proceso  de  concentración de  la luz  solar  constituye  una  forma  clara y rigurosa, muy original, de ´presentar el concepto de  entropía  de  Boltzmann”. Este enfoque debería formar parte de la docencia habitual universitaria y tecnológica.

Más  aun, dada la sencillez  de su formulación matemática del concepto de entropía  de  Boltzmann,  que requiere solo el dominio del concepto de logaritmo y de algunas de sus propiedades  elementales, la empresa resulta en principio perfectamente  factible. La  célebre formula física:

                 S =    k · ln W

la cual, sin tanto impacto como la relativista de  Einstein:  E = mc2, removió los cimientos de la física teórica  a principios  del  siglo XX.

Por otra parte, ya hoy día está claro para todo el mundo que los  recursos  de que  el  hombre  dispone para  vivir  están sometidos hoy día  a  un constante proceso  de extinción y degradación que, por lo general, lamentablemente  se  manifiesta  a  un ritmo  vertiginoso. Se trata  de un proceso constante de aumento de entropía en  el mundo, integralmente considerado, como un sistema, que la supervivencia humana, en peligro,  impone  controlar con premura. Por esta  razón, la  llamada  definición estadística  de entropía, la de  Boltzmann, sin dudas, la forma  más clara de presentar  este  concepto, necesariamente  debe ser  del  conocimiento de todos.

VN:R_U [1.9.17_1161]
Rating: 0.0/5 (0 votes cast)

Sistemas solares en los Andes del Perú

el 2015/03/10 en Bioclimatismo, Energía Solar Fotovoltaica, Solar Térmica

En una mañana de Septiembre de 2014, me paso a recoger a las 4.00 am, en el Hotel donde me hospedaba en la ciudad de Huancayo, Junín, Perú el profesor CarlosAñadir objeto  miembro del equipo de investigación que dirige el  Dr. Ciro Espinoza de la Universidad Nacional del Centro del Perú, con el objetivo de visitar 9 viviendas a 4000 msnm en los distritos de Yanacancha y San José de Quero de las provincias de Chupaca y Concepción de la Región de Junín del Perú,  en las cuales se instalaron colectores solares termosifónicos de tubos al vacio para el suministro de agua caliente sanitaria, un sistema fotovoltaico aislado para el alumbrado,  un muro tromble para reducir el friaje, cocinas ecológicas con evacuación de gases y un invernadero para el cultivo de hortalizas.

La experiencia fue única e inolvidable, ver como el uso de tecnologías solares y sostenibles contribuye al incremento de la calidad de vida, salud y bienestar  a familias  en los altos de los Andes y el agradecimiento de sus pobladores es una demostración de las potencialidades y del alcance estas tecnologías.

20140901_Perú_01a

 

Fig. 1. Colector solar termosifónico y módulo fotovoltaico.

20140901_Perú_03a

Fig. 2. Vista de los sistemas solares instalados en una vivienda.

20140901_Perú_4

Fig. 3. Invernadero para el cultivo de hortalizas.

20140901_Perú_5a

Fig. 4. Con el profesor Carlos y estudiantes colaboradores de la UNCP.

VN:R_U [1.9.17_1161]
Rating: 0.0/5 (0 votes cast)

Placas Solares Fotovoltaicas o Termicas?

el 2013/11/26 en Blog, Consejos en línea, Destacados, Energía Solar Fotovoltaica, Solar Térmica

¿Conoce las diferencias entre las Placas Solares Fotovoltaicas o Termicas? Las placas solares Fotovoltaicas sirven para generar Electricidad. Mientras que las placas solares Térmicas se utilizan para calentar Agua. A partir de ahora, ya sabrá que las placas negras que toman el sol encima de los tejados son módulos fotovoltaicos o bien captadores solares térmicos.

Módulo Fotovoltaico para generar Electricidad.

Algunos minerales, como el silicio cristalino, poseen unas propiedades fotovoltaicas. Es decir, son capaces de generar una pequeña corriente eléctrica continua cuando reciben los fotones del sol. Los paneles fotovoltaicos se componen varias células de silicio, sobre un soporte rígido, con un cristal solar, conexiones eléctricas y un marco que lo refuerza.

placas solares fotovoltaicas o termicas

Los módulos se montan en serie o en paralelo según las tensiones (voltios) eléctricas requeridas por el sistema. En instalaciones aisladas, se conectan a un regulador para cargar baterías, para su uso posterior. Para la venta de electricidad a la red, se conectan a un inversor para convertir la corriente continua en corriente alterna.

El sol del mediodía emite una radiación alrededor de unos 1.000 Wh/m2, en condiciones normales y según las zonas geográficas. Los módulos fotovoltaicos, con un rendimiento medio del 15%, respecto a su superficie, generan al mediodia unos 150 Wh/m2 de electricidad.

Captador Solar Térmico para calentar Agua. Lee el resto de la entrada →

VN:R_U [1.9.17_1161]
Rating: 0.0/5 (0 votes cast)
  • Abrir la barra de herramientas