Termodinámica Archives - Energía naRural

naRural posts Community posts

La luz solar y la vida en el planeta

el 2015/07/01 en Energía Eólica, Energía Solar Fotovoltaica, Energías Renovables, I & D / Innovación, Solar Térmica

Se destaca los fuertes vínculos existentes entre la astronomía, la meteorología y la ingeniería del aprovechamiento de la luz solar como fuente de energía. No obstante, es importante destacar también y tratar con algún grado de detalle, la importancia de la luz solar para la vida en el planeta, vista esta relación desde el punto de vista más general y con la segunda ley de la termodinámica como elemento de análisis.

Son tres los temas abordados, dos de ellos de forma comparativa, la fotoconversión de la luz solar (Fig. 1) y la fotosíntesis (Fig.2). Se trata de destacar el hecho de que, dado que la luz solar tiene como fuente de energía un carácter omnipresente que la relaciona con la vida de los animales y con la vida de las plantas, se debe trabajar esforzada y ordenadamente por lograr un escenario en el que el área del planeta dedicada a la vegetación, los cultivos incluidos, se complemente, fundamentalmente, con campos de celdas solares y los captadores térmicos. Todo ello debe ser alcanzado en gran escala de modo que la luz solar juegue el papel que le corresponde en el balance energético de las diferentes regiones del mundo.

BM08_F1_Aprovechamiento de la luz solar

Fig.1. Fotoconversión de la luz solar.

No se trata precisamente de exponer con extensión excesiva los fundamentos de la fotoconversión ni de la fotosíntesis de la luz solar.

BM08_F2_Fotosíntesis de la luz solar

Fig.2. Fotosíntesis de la luz solar.

No obstante, se presentan algunos elementos mínimos de física del estado sólido que permitan adquirir  una visión elemental, sencilla, pero rigurosa, del principio de funcionamiento de una celda solar. De igual modo, se describe el proceso de la absorción de los fotones solares en el esencial proceso de la fotosíntesis.

Se trata, sobre todo, de mostrar, comparativamente, los mecanismos de acción de la absorción fotónica tanto en un proceso como en otro. Y en el fundamento mismo del tratamiento está la segunda ley de la termodinámica, principio de la física y de la ciencia en general que parece subyacer en el centro mismo de la naturaleza y de la vida. Más aun, la segunda ley de la termodinámica, específicamente el principio de degradación de la energía que de ella se deriva, ha de resultar un elemento clave para  la preservación de los recursos de vida del planeta y de la vida misma.

Otro elemento omnipresente y muy activo de la interacción de la luz solar con la vida en la Tierra, es el viento (Fig.3). Como se conoce, el viento es en última instancia un producto de la acción de la máquina térmica que es el la atmósfera, alimentada por la energía procedente del Sol. Sin dudas, junto con la biomasa, la energía eólica es una de las fuentes de energía no convencional de mayor peso relativo en el balance energético mundial.

BM08_F3_Aprovechamiento Eólico

Fig.4. Aprovechamiento energético del viento.

Se trata de energía de gran valor, energía de máxima gradación, es decir de máxima calidad. Se trata de energía mecánica que puede ser convertida, en principio en un ciento por ciento, en energía eléctrica. Sin embargo, por su relación directa con la vida, el fenómeno del viento en su manifestación extrema, los huracanes, son el tema elegido para ilustrar con un ejemplo el mecanismo de acción mediante el cual la energía contenida en la luz solar se convierte en energía mecánica. La energía procedente del Sol se convierte en un proceso relativamente complejo que involucra el movimiento de rotación de la Tierra, en energía de máxima gradación, energía mecánica.

VN:R_U [1.9.17_1161]
Rating: 0.0/5 (0 votes cast)

Turandot, las cumbres de la Tierra y la educación solar

el 2015/06/12 en Energías Renovables, Formación / eLearning, Solar Térmica

En el blog [1] se trata la relación entre el primer enigma de Turandot y las cumbres de la Tierra y de la esperanza que deposita la humanidad en encontrar una solución a los problemas actuales de la conservación del medio ambiente y el desarrollo sostenible de nuestro planeta.

El siguiente enigma

Si queremos que el mundo cambie, hay que preguntarse: ¿quién lo hará cambiar? Por supuesto, será la humanidad quien lo hará cambiar, pero para lograr esto los hombres y las mujeres  (la humanidad) deben ser educados en la conservación ambiente, las energías renovables y el desarrollo sostenible, (Fig.1).

BM07_F1r_Eduación ambiental_3Por ello no es difícil concluir que los profesores, especialmente los de la enseñanza general son los llamados a enfrentar  resolver el problema de la subsistencia humana. Ha sido escrito el siguiente epígrafe resultado de una experiencia personal.

Fig.1. Educación solar y ambiental.

 

La educación en energía solar

En La Habana, Cuba, se creó un grupo de trabajo en energía solar,  adscripto a en el entonces  Instituto de Investigación Técnica Fundamental (ININTEF) de la Academia de Ciencias de Cuba (ACC), en 1976, con el objetivo de desarrollar actividades de investigación y desarrollo en el campo del  aprovechamiento de la luz solar como fuente  la energía.

Después de más de dos años de trabajo algunos investigadores estuvieron ya en condiciones de trasmitir algunas de sus experiencias, tanto nacionales como internacionales, de  modo que  ya en octubre de 1979 fue impartido por primera vez el curso de especialización titulado Diversas Formas de  Aprovechamiento de la  Energía  Solar, auspiciado a nivel de Ministerio por la entonces Academia de  Ciencias  de  Cuba. Dos monografías fueron preparadas entonces, específicamente, para satisfacer las necesidades de los alumnos.

A partir de aquí, en diferentes versiones cada vez más perfeccionadas, el curso se  mantuvo durante quince años, la que permitió acumulas una singular experiencia que no tiene antecedentes en Iberoamérica. El contenido básico de la especialización abarcaba los cursos siguientes:

  • Radiación solar y astronomía posicional del Sol;
  • Termodinámica de la luz solar;
  • Cálculo de instalaciones solares de calentamiento de agua;
  • Óptica y termodinámica de los concentradores solares;
  • Usos térmicos de la energía solar;
  • Energía solar fotovoltaica.

De este modo quedaron expuestas en el curso las dos formas básicas de utilización de la luz solar como fuente de energía, la fotovoltaica y la térmica, (Fig.2). A partir de aquí se planteó el reto de darle al tema de la luz solar como fuente de energía un tratamiento unificado, independientemente del modo específico de aprovechamiento.

BM07_F2r_Diversas formas aprovechamiento energía solar

Fig. 2. Aprovechamiento térmico y fotovoltaico de la energía solar.

Resultó realmente sorprendente  descubrir que la aplicación de la termodinámica a una fuente de características tan peculiares como la solar, facilita en gran medida su propia  presentación como rama de la física. En efecto, se pudo comprobar  que materias tan alejadas del dominio de la gran masa de profesionales como la llamada física estadística (termodinámica estadística) encuentran en el caso específico de la luz solar como fuente de energía una nueva y estimulante área de aplicación que, sin dudas favorece la comprensión de la materia en sí.

Finalmente hay que señalar con énfasis,  que en la medida en que las diferentes versiones del curso se fueron desarrollando, los profesores fueron descubriendo que la luz solar como fuente de energía constituye un formidable objeto de estudio para la docencia en las ciencias básicas y en  otras materias específicas de las carreras de ciencias  e ingeniería y, de igual modo, para el desarrollo en el futuro profesional de una mentalidad racional en el uso de los recursos energéticos.

Los más sorprendentes, en mi condición de profesor principal de aquellos cursos, fueron los profesores de nivel medio que lograron matricularse en él. Es un hecho que solo a través de ellos es posible alcanzar la masividad que una empresa como la que nos proponemos puede llevarse  a feliz término. He ahí la idea esencial de esta iniciativa.

El tercer enigma de Turandot y las cumbres de la Tierra

¿y el tercer enigma?. Hielo que te hace arder, y se hiela con tu fuego. Blanca, y oscura. Si quieres ser libre te hace esclavo, si por esclavo te acepta te hace rey…

BM06_F3a_Enigmas_Turandot_cumbres_Tierra

Fig. 3. Tercer enigma de Turandot y las cumbres de la Tierra.

Turandot, en su orígenes, una vengativa y cruel princesa, finalmente se ha trasformado, ella ha sido la verdadera vencedora, finalmente ha comprendido el sentido del amor. Ha sido el triunfo del mal sobre el bien, del amor sobre el odio. Y es precisamente a lo que se aspira con las cumbres de la Tierra… El simbolismo es fuerte y claro.

Referencias

  1.  Alvarez-Guerra Jauregui, M.E. “El primer enigma de Turandot y las cumbres de la Tierra”. http://termodinamicasolar.energia-rural.com/2015/06/03/el-primer-enigma-de-turandot-y-las-cumbres-de-la-tierra/.
VN:R_U [1.9.17_1161]
Rating: 0.0/5 (0 votes cast)

El primer enigma de Turandot y las cumbres de la Tierra.

el 2015/06/03 en Formación / eLearning, Otras Energías, Solar Térmica

El medio ambiente se convirtió en una cuestión de importancia internacional en 1972, cuando se celebró en Estocolmo la Conferencia de las Naciones Unidas sobre el Medio Humano (conocida posteriormente como Cumbre de la Tierra de Estocolmo).

Fue la primera gran conferencia de la ONU sobre cuestiones ambientales internacionales,  y marcó un punto de inflexión en el desarrollo de la política internacional sobre la conservación y protección del medio ambiente, Fig.1.

BM06_F1a_Cumbres_de_la_Tierra

Los Enigmas de Turandot del Siglo XXI. El hoy célebre  Concierto de los Tres tenores celebrado con motivo del Mundial de Fútbol de 1990, tuvo como marco en las termas de Caracalla, Roma. Obras como la Aida de Verdi o la propia Turandot de Puccini, por ejemplos, han sido representadas en las Termas. El fragmento de la ópera Turandot “Nessun dorma” (nadie duerma en imperativo) sintetiza muy bien el filosófico argumento de la obra, Fig. 2.

BM06_F2a_Opera_TurandotHabiendo hecho el logro del amor de la bella y vengativa princesa el sentido de su vida, en la China milenaria, el protagonista decidió someterse a un cruel concurso. Este consistía en la solución de tres enigmas, tres acertijos, so pena de morir bajo el hacha del verdugo.

El primero de los enigmas resueltos por el príncipe, cómo se verá,  tiene un simbólico vínculo con el tema básico de las Cumbres. El acertijo reza así: “en la negra noche un fantasma iridiscente se eleva y despliega las alas sobre la negra e infinita humanidad. Todo el mundo lo invoca, todo el mundo lo implora, pero el fantasma desaparece con la aurora para renacer en el corazón de cada hombre. ¡Y cada noche nace, y cada día muere!”.

Intentemos resolver el problema con la ayuda de la termodinámica, más exactamente con una ciencia que es consecuencia directa de la termodinámica: la teoría de la información.

El llamado principio neguentropico de la información (PNI) nos guiará en el proceso de solución del problema. En [1] se expuso el problema de las 27 bolitas, generalizando este sencillo problema, se puede concluir que se trata de une aproximación sucesiva al resultado deseado, la detección de la bola diferente que, finalmente, conduce a  la total eliminación de la incertidumbre inicial.

En efecto, en cada etapa, mediante la obtención de  información, se va disminuyendo el nivel de incertidumbre. En rigor se trata, como se  adelantó anteriormente, de lo que en teoría de la información se conoce como principio  neguentropico de la información (PNI). Obviamente, neguentropia, en este contexto, es sinónimo de nivel de conocimiento sobre el sistema.

Yendo un poco delante, hacia el tema centro de esta disertación, se puede decir que la supervivencia de una especie en el largo camino de la evolución se basa, entre otras cosas, en la aplicación consecuente de este principio. La fórmula que establece el principio es:

                          Sf = Si – I                                                                (1)

El significado de la expresión es directo: dado un nivel inicial de incertidumbre sobre las posibles respuestas del sistema, el efecto de haber obtenido determinado nivel de información fiable sobre el mismo reduce el nivel de desinformación inicial. Sea Si  en nivel de desinformación que se tiene, sobre algo y sea I el nivel de información que se adquiere  sobre el problema en el proceso de solución. Finalmente, Sf  será el nuevo nivel de desinformación que queda después de este primer esfuerzo.

Si se analiza el enunciado del acertijo, en busca de cierto nivel de información, cabe preguntarse:    ¿el sentido del enunciado es concreto o simbólico? Obviamente, tiene un sentido alegórico. Más aún, si es alegórico, es de un gran interés humano, dado que el fantasma extiende las alas sobre toda la humanidad. Así nuestro nivel de desinformación ha disminuido. Sea Sf1 este nuevo nivel de desinformación. Obviamente se cumple que:

                                 Sf1  =  Si1  –  I1

Más información se puede obtener si se repara en el hecho de que se trata de algo positivo, algo muy sensible para todos los seres humanos. Un permanente lugar de privilegio en el corazón de los seres humanos solo lo ocupan los sentimientos. Finalmente sabemos que se trata de un sentimiento, pero, ¿un sentimiento de qué? Nuevamente se ha puesto de manifiesto el mecanismo de acción del PNI. Así, gracias a la nueva información obtenida, designada por I2, el nivel de desinformación se ha reducido a Sf2:

                                Sf2  =  Si2  –  I2

Pero aún no hemos logrado resolver el enigma, se requiere más información, que se ponga de manifiesto nuevamente el Mecanismo de acción del PNI. Ahora la gramática nos ayudará.

Completemos la frase: un sentimiento de…La palabra que falta será la solución de este primer enigma. Obviamente no es un sentimiento de odio, ni de amor, ni de patriotismo, ni de fe religiosa. Es algo que renace, que renace en el hombre y lo ayuda a vivir cada nuevo día, un sentimiento de … esperanza. ¡Esta es la solución!. La Esperanza, la misma que lleva a los hombres a reunirse en las cumbres de la Tierra (Fig.3). A imaginar una solución.

BM06_F3a_Enigmas_Turandot_cumbres_Tierra

Fig. 3. Primer enigma de Turandot y las cumbres de la Tierra.

Referencias

1.     Alvarez-Guerra Jauregui, M.E. “Enfoque termodinámico de la energía eólica”. http://termodinamicasolar.energia-rural.com/2015/05/14/enfoque-termodinamico-de-la-energia-eolica/

VN:R_U [1.9.17_1161]
Rating: 0.0/5 (0 votes cast)

Enfoque termodinámico de la Energía Eólica

el 2015/05/14 en Formación / eLearning, I & D / Innovación, Otras Energías

Dada la importancia que reviste para el futuro energético de la humanidad las fuentes  renovables,  entre las que se destacan la solar y la eólica (ver Fig.1). También originada en la luz solar, resulta necesaria la realización  de una profunda y detallada  caracterización de cada una de ellas desde el punto de vista  termodinámico. Se alcanza así con estos análisis  una valoración mas cercana a la realidad de las posibilidades de cada fuente se energía, de sus ventajas y limitaciones. Un caso en el que esto se pone de manifiesto con particular evidencia es el de la energía eólica.

BM05_F1_Molino_de_viento_Aerogenerador1

Si se piensa ahora en un aerogenerador, se advierte al instante que este dispositivo opera, termodinámicamente, a un nivel máximo de gradación de la energía. Por otra parte, dada su disponibilidad en algunos puntos de la superficie de La Tierra en cantidades apreciables,  y  a partir de lo señalado anteriormente,  resulta evidente que la energía eólica presenta la muy atractiva característica de que se trata de la posibilidad de producir energía eléctrica en cantidades apreciables en el balance energético de un país.

Resulta indudable que la energía  eólica ha resultado muy adecuada para la producción de energía eléctrica, lo que la equipara en este aspecto a las fuentes las convencionales y la nuclear. Parecería que con relación a la energía del viento todo está resuelto y todo se resuelve, pero no es así. La  producción  de electricidad a partir  de generadores eólicos  esta sometida a toda una serie de problemas, algunos los cuales  tienen su origen en el carácter aleatorio de la fuente. Un histograma vientos,   luego de ser aproximado por una distribución  gaussiana (Fig. 1),  tiene asociado un determinado nivel de incertidumbre  que es lo mismo que decir  de desinformación.

BM05_F2_Distribución gaussiana

Fig. 2. Distribución gaussiana.
Un concepto propio de la teoría  de la información, no de la termodinámica clásica,  el de   entropía de una distribución, caracteriza  adecuadamente esta situación y contribuye a dar, sin dudas,  una visión objetiva  y realista del viento como fuente de energía. La desviación media cuadrática de la gaussiana resulta clave en esta determinación.   tienen su origen en el carácter aleatorio de la fuente. Un histograma vientos,   luego de ser aproximado por una distribución  gaussiana (Fig. 1),  tiene asociado un determinado nivel de incertidumbre  que es lo mismo que decir  de desinformación.
Un recordatorio necesario
La Segunda Ley de la Termodinámica, sin dudas, uno de los descubrimientos científicos más importantes del siglo XIX, subyace en la esencia misma de los procesos naturales.

 Por otra parte, una de las conclusiones más importantes  que se derivan de su  enunciado, constituidos por dos tesis independientes, específicamente de la primera de ellas, la referida a los procesos reversibles, es la existencia  de diferentes calidades o gradaciones de energía.  Una aplicación directa  de la clasificación  de Brillouin a las fuentes de energía  renovables más conocidas, arroja el siguiente resultado:

  1. Energía eólica y solar fotovoltaica (mecánica y eléctrica);
  2. Hidrógeno (química) a partir de la luz solar;
  3. Calentamiento de diversos tipos (calor).

Los grupos son definidos en términos de calidad de la energía y, en este contexto,  el mecanismo de acción  de la II Ley se manifiesta del siguiente modo: los procesos  de conversión  de una forma de energía  superior a otra de inferior calidad transcurren espontáneamente,  que es lo mismo que decir sin compensación. Por el contrario,  las transformaciones energéticas en sentido inverso solo son posibles al precio de una compensación.

El aerogenerador tiene lugar una convención de energía mecánica  en eléctrica. El viento tiene un intrínseco carácter aleatorio. Este carácter entrópico de la fuente eólica  afecta apreciablemente la fiabilidad operacional del sistema.

Por otra parte la incertidumbre ligada a esta  característica del régimen de vientos puede ser descrita, mediante el concepto de entropía diferencial. La entropía diferencial, por el contrario,  se enmarca en la teoría  de la información, y como establece Dimitrev, es una medida  de la indeterminación  media de  una magnitud aleatoria.

En una primera aproximación, esta idea puede ser entendida del modo siguiente: sea la salida del sistema de tal grado de aleatoriedad, que sean posibles  P  resultados de salida. Se dice entonces que la indeterminación viene dada por la expresión logarítmica:

H  = log P                                                      (1)

Ejemplo: sean 27 bolitas de aspecto exterior idéntico, Se conoce, sin embargo, que una de las bolitas es ligeramente más pesada que el resto del conjunto. De lo que se trata es de determinar el número mínimo de pesadas que es necesario realizar en una balanza de comparación, para detectar la bolita más pesada.

Solución:

De acuerdo con la formula  (1), evaluada para  P = 27, la indeterminación inicial es: H = log  27.

Por otra parte, la incertidumbre eliminada en cada pesada es  log3, dado que tres son los resultados posibles de una pesada de comparación. De modo que el numero mínimo de pesadas viene dada por:

BM05_F3_Fórmula
y, por tanto, se tiene  n =  3.

No resulta difícil comprobar que, efectivamente, agrupando inicialmente las 27 bolitas en tres grupos de nueve bolitas cada uno, el problema se resuelve en tres pesadas.

Generalizando ahora el problema tratado anteriormente, se puede concluir que se trata de una aproximación sucesiva a la eliminación total de la incertidumbre inicial. En cada etapa, mediante la información se iba eliminando incertidumbre. Se trata de lo que se conoce como principio  Neguentropico de la información. Obviamente, neguentropia, en este contexto, es sinónimo de nivel de conocimiento sobre el sistema.

VN:R_U [1.9.17_1161]
Rating: 0.0/5 (0 votes cast)
  • Abrir la barra de herramientas